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Introduction  
Recurrent acute pancreatitis (RAP) and chronic pancreatitis (CP) lack 
effective disease-modifying therapies; thus, symptom management remains 
the primary treatment for patients. The complex etiologies and 
pathophysiological mechanisms of RAP and CP pose challenges in 
developing therapies, necessitating suitable animal models for preclinical 
drug screening to successfully translate into clinical trials. The goal of this 
review is to provide information on relevant preclinical models that can be 
used for drug screening.  

 

Methodology  
Publications reporting on animal models in pancreatitis research were 
sourced from medical and academic journals. While there were many 
possible models for pancreatitis research identified, many lacked clinical 
relevance and/or feasibility.  As such, we determined that it was necessary to 
develop a set of criteria to determine a model’s relevance to preclinical drug 
screening. The overarching criteria we used were based on whether the 
model produced a phenotype that recapitulates RAP or CP in humans and on 
whether the model was toxic or had negative side effects in the animals. We 
also considered the model’s feasibility and relevance to researchers. Models 
were classified into either the ‘relevant’ or ‘non-relevant’ categories.  Models 
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published prior to 2013 that were referenced in at least one other publication 
in the past 10 years and models published prior to 2018 that were referenced 
in at least one other publication in the past five years were considered 
“relevant”. Models published after 2018 were categorized based on the 
model’s feasibility and replicability through the results of its respective study. 
Conversely, models with limited evidence, severe adverse effects, limited 
feasibility due to ethical and financial concerns, and those with limited clinical 
relevance were considered “non-relevant”. Models that have been previously 
used in preclinical drug screening research were also classified as “relevant”.  

 

 

Figure 1:  Evaluation of Preclinical models  
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Results 

74 articles were analyzed for preclinical models used for pancreatitis, there 
were a total of 48 different preclinical models identified. Of these, 19 were 
classified as ‘relevant’ and 29 were classified as ‘non-relevant’ for preclinical 
drug screening (Figure 1). Relevant models according to the established 
criteria are listed in Table 1. A full list of all models reviewed is available on our 
website. Drugs that have been tested in specific models are also listed (Table 
1). Dabigatran, a type of blood thinner, was tested in trypsin dependent GEMM 
models. Pirfenidone, an antifibrotic drug, was tested in two different models, L-
arginine, a type of amino acid model, and in the cerulein model. Proglumide, 
a cholecystokinin (CCK) antagonist drug, and Baicalin, a flavonoid glycoside, 
were only tested in the cerulein model. Adipose stem cell therapy1 and FGF212 
therapy were tested in the ETOH and cerulein model. The Orai inhibitor, 
CM5480 was tested in the cerulein model.  

Discussion 
We have compiled a comprehensive list of preclinical models which may be 
used for pancreatitis research and listed those that are more relevant based 
on use and feasibility. While not all the relevant models have been utilized for 
preclinical drug screening, each holds the potential for such applications. The 
relevance of these models varies depending on the specific use. Several of 
the preclinical models have already been used in drug testing for pancreatitis 
including dabigatran, pirfenidone, proglumide, baicalin, adipose stems cells, 
FGF21 therapy, and CM5480, an Orai1 inhibitor. 

We provide this information to expedite drug screening studies in relevant 
preclinical models, thereby accelerating the development of therapies for this 
therapy this disease.  

https://docs.google.com/spreadsheets/d/1qFVCG49TY0jSaH3bRyYmOK0w9GnOWtDRZdkqWFTcmBw/edit#gid=0
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Table 1: List of Relevant Preclinical Models (chronic pancreatitis)  

Model Drug Testing* 

GEMM Models 

PRSS1 R122H3 Dabigatran 

transgenic PRSS1R122H4 Dabigatran 

The T7D23A mouse model5 Dabigatran 

T7K24R mouse model6 Dabigatran 

hPRSS1 R122H /N2917  

PRRS2 and PRSS1 R122H8  

Atg5-knockout /deletion9-12 13  

Atg7-knockout /deletion 14,15  

IKKa knockout /deletion15-17  

PNLIPP p.T122M18  

Chemical Models (bile) 

TNBS (intraductal)17,19,20  

Amino Acid Models 

L-arginine15,17,21-26 Pirfenidone 

Nongenic Mouse Models 

Pancreatic duct ligation27,28   

Secretagogue Models 

Cerulein15 1,2,17 Proglumide, Pirfenidone, Baicalin, adipose 

stem cell, FGF21 
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Mechanical 

Ligation/Obstruction15,17,22,28-42  

Alcohol induced environmental modulators 

ETOH +HFD chronic (10 week) 2,15,17,43 Adipose stem cell, FGF21 

*not complete list. 
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